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ON LOCALLY SYMMETRIC VECTOR FIELDS 
ON RIEMANNIAN MANIFOLDS 

BY 

H I L L E L  G A U C H M A N  

ABSTRACT 

It is shown that if an n-d imens ional  (n _-> 3) Riemannian  manifold admits  r _-> 2 

locally symmetr ic  vector fields (LSVF's) ,  then it is a V(k)-space. In particular, if 
r = n - 1 then the manifold is a space of constant  curvature.  In the case of a 
3-dimensional  Riemannian  manifold a close connect ion be tween  LSVF ' s  and 
eigenvectors of the Ricci tensor  is found.  

1. Introduction 

This paper is concerned with n-dimensional (n > 2) Riemannian manifolds 

admitting r_-> 2 linearly independent locally symmetric vector fields (briefly 

LSVF). LSVF's of the first and of the second order were defined in [6] by A. G. 

Walker and the definition was motivated by his investigation of possible laws of 

orientation of galaxies in the standard cosmological model of General  

Relativity ([5]). 

In the present paper we show that the existence of several LSVF's imposes 

very strong restrictions on a Riemannian manifold. It turns out that for n = 4 a 

Riemannian manifold admits r ~ 3 linearly independent LSVF's of the first 

order or admits two such fields at least one of which is of the second order, if and 

only if it is a Riemannian manifold of a very special type (V(k)-space). It will be 

also shown that if for n _-> 4 a Riemannian manifold admits ( n -  1) linearly 

independent LSVF's of the first order, then it is a space of constant curvature. 

The case n = 3 is special. It will be shown that in this case there is a close 

connection between LSVF's and eigenvectors of the Ricci tensor. It turns out 

also that if a 3-dimensional Riemannian manifold admits three different (but not 

necessarily linearly independent) LSVF's of the first order or two such fields one 
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of which is of the second order, then this Riemannian manifold is a space of 

constant curvature. 

2. Preliminaries 

Let M be an n-dimensional Riemannian manifold (n -> 2) and let V be a unit 

vector field on M. Let U be a normal coordinate neighbourhood with the center 

at p E M. According to [6], the field V is said to be symmetric about p if its 

restriction on U is invariant under all orthogonal transformations of the normal 

coordinates on U which leave V(p) invariant. Let (x) = (x 1,.. ", x")  be a normal 

coordinate system on U with the center at p and let F(x)  = 0 be the condition on 

V = V(x )  for symmetry about p. In this case F(0) = 0 identically, and V is said 

to have first order local symmetry aboutp if 3F/c~x ~ = 0 at p (i = 1 , . - . ,  n), and 

second order local symmetry about p if also O2F/dx~3x~ = 0 at p (i,j = 1 , . . . ,  n ). 

The vector field is said to be a locally symmetric vector field (LSVF) of the first 

(second) order, if it has first (second) order local symmetry about every point 

of M. 

PROPOSITION 1 ([6]). Let M be an n-dimensional Riemannian manifold. 

(a) For n >- 4 a unit vector field V on M is a L S V F  of the first order if and only if 

there exists a function Z on M such that for every X E TM 

(1) V x V  = A(X - (X, V)V) ,  

where TM is the tangent bundle of M and (. �9 . , . .  �9 ) is the Riemannian scalar 

product. 

This field is a L S V F  of the second order if and only if in addition to (1) it satisfies 

(2) X(A)  = (X, V )V(A)  

for every X E TM. 

(b) For n = 3 a unit vector field V on M is a L S V F  of the first order if and only if 

there exist two functions h and [3 on M such that for every X E T M  

(3) V x V  = h ( X  - (X, V ) V ) +  [3(V x X) ,  

where V x X is the "cross-product" in 3-dimensional Euclidean space. 

This field is a L S V F  of the second order if and only if in addition to (3) it satisfies 

one of the following two conditions: 

(i) X(A) = (X, V)V(A),  
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(4) /3 = 0 

for every X E TM. 

(ii) A = 0, 

(5) /3 = const ~ 0. 

In the following discussion we need the definition and some properties of 

V(k)-spaces. Such spaces were introduced and investigated by G. I. Kruckovic 

and A. S. Solodovnikov in [3], [4]. 

DEFINITION 1 ([1]). Given Riemannian manifolds Mo and M~ and a positive 

valued function f on M0, the warped product M = Mo• is the manifold 

MoXM~ furnished with the Riemannian structure such that IIXll 2= 

ll~o.Xll2+f2(~,oX)ll~,.xll 2 for every X E TMx, x E M, where 7r, (i = 0, 1)is the 

projection zq:M0 x M1 ~ M~ and II"" II is the norm on M~. 

DEFINITION 2 ([4]). A warped product M = M o •  is called a k- 

decomposition of M if dimMo~>2 and the manifold Mox~R ~ is a space of 

constant curvature k. M0 is called the principal part of the k-decomposition. 

PROPOSITION 2 ([4]). (a) If  a Riemannian manifold M admits a k- 

decomposition M = Mo xfM~ and an l-decomposition M = No xsN1, then k = I. 

(b) If  M = Mo• is a k-decomposition of M, then Mo is a space of constant 

curvature k. 

(c) Given a space Mo of constant curvature k, a function ~b on Mo and an 

arbitrary Riemannian manifold M1, the warped product M = MoX,~,M~ is a 

k-decomposition of M if and only if ~b satisfies the condition 

(6) Vx grad ~ = - k X  - X(~b)grad ~b, 

where X ~ TMo and V is the covariant derivative on Mo. 

DEFINITION 3 ([4]). A Riemannian manifold M is called a V(k)-space if for 

every p E M there exists a neighbourhood U ~ p admitting a k-decomposition 

U = UoXtU~. 

DEFINITION 4. Given a V(k)-space M and p ~ M, let A be a set of all 

neighbourhoods of p which admit a k-decomposition. The maximal value of 

dim Uo for all k -decompositions U = UoxrU1, U E A is called the range of M at 

the point p. 
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It is convenient to regard an n-dimensional space of constant curvature k as a 

V(k)-space of the range n at every point. 

3.  T h e  c a s e  n _-> 4 

In this section we investigate n-dimensional (n ~ 4) Riemannian manifolds 

admitting several LSVF's. We will denote a LSVF V satisfying the equation (1) 

by (V,)t). 

THEOREM 1. (a) Let M be an n-dimensional (n >- 4) Riemannian manifold 

admitting either r >-_ 3 linearly independent L S V F '  s of the first order or r = 2 such 

fields at least one of which is of the second order. Then each of these fields is a 

L S V F  of the second order. 

(b) I f  an n-dimensional (n >- 4) Riemannian manifold M admits r >-_ 2 linearly 

independent L S V F ' s  (V~,A,) (i = 1 , . . . ,  r) of the second order then it is a 

V(k)-space. For every point p E M there exist a neighbourhood U 9 p, a 

k-decomposition U = UoX,2,U1 with dim Uo= r, and r L S V F ' s  (W~,/x,) of the 

second order on Uo such that W~(tp)=/x,, V~(q)=q~q,.(Wi(qo)), A~(q)= 

/x,(qo), where q = (qo, ql) is an arbitrary point of U = Uo• UI q~q,: Uo---~ U, 

q~ql(qo) = (qo, ql); and Zro : U --~ U~ is the natural projection. 

(c) If  Mo is a V(k  )-space, p E M, and the range of M at p is r, then there exist a 

neighbourhood U 9 p, a k-decomposition U = UoX,2,U~ with dim Uo=r ,  and r 

LS  VF' s (W~,/~,) (i = 1 , . . . ,  r) of the second order on Uo such that Vr (4,) = tz, and 

the vector fields (V~,A~) on U arising from (W~,/z,) as prescribed in (b), are 

L S V F ' s  of the second order on U. 

(d) I f  M is a connected and simply connected r-dimensional Riemannian 

manifold of constant curvature k, and (W~,/z,) (i = 1 , . . . ,  r) are L S V F ' s  of the 

second order on Mo, then there exists a function ~ on Mo satisfying the equations 

W~(tp ) = tz,. I f  M~ is an arbitrary Riemannian manifold, then M = Mo• is a 

V(k  )-space and the vector fields (V~,A,) (i = 1 , . . . , r )  arising from (W~,/z,) as 

prescribed in (b), are L S V F ' s  of the second order on M. 

(e) I f  an n-dimensional (n >- 4) Riemannian manifold admits (n - 1) linearly 

independent L S V F ' s  of the first order, then it is a space of constant curvature. 

I. PROOF OF (a). Let (V,, A,) (i = 1,-- . ,  r; r _-> 2) be LSVF's of the first order 
on M. Then by (1) 

(7) V~V, = A,(X - <X, V,> V,). 
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Let us denote ~'~j = (V~, Vj) and let x ( M )  be the set of all vector fields on M. 

LEMMA 1. Let X E X (M). I f  for some i, j (i J j)  iX, V~) = O, iX, Vj) = O, then 

(IX, v,] ,  v , )  = 0, ( [x ,  v,], v,)  = 0, x(~i i )  = 0, x ( ~ , )  = 0. 

PROOF. V~(X, Vj)=0.  Using (7) we obtain (Vv, X, V/)= 0. Again by (7), 
(IX, V~], Vi) = (VxV~ - Vv, X, Vj) = A,(X, Vj) = 0. It can be proved analogously 
that i[X, V~], V~) = 0. 

Also X(r,~) = X(V, ,  Vj) = (VxV~, Vj)+ (V,, VxV~) = 0, by (7). 
Since i[X, Vj],V~)=0, ([X, Vj] ,Vj)=0,  we obtain [X, V,I(~',,)= 0. It 

follows that 

0 = IX, V, l (r , , )=  x ( v , ~ , , ) -  v , ( x , , , )  = x ( v ,  iv, ,  v,))  

= X(iVv, V,, V~)+ (V,, Vv, V,))= X(A,(1- r~))= X(h , ) (1 -  ~-,~). 

Therefore X(A,) = 0. �9 
Let us denote 

(8) n,, v,(,x~) + 

LEMMA 2. (i) ~/u = 1'/22 . . . . .  "qr,. 

( i i )  ~q = ~lJ~- 

(iii) For every X, Y E x ( M )  

(9) (R(X, V,)V,, Y ) =  k((X,  Y ) -  (X, V,)iY, V~)) 

where k = - TI,, i.e., 

(10) k --- - [V,(A,)+ A~]. 

PROOF. Computing (VxVg-  VyV•  Vtx, yi)V~ and using (7), we obtain 

R(X, Y)V~ = - [ r ( h , ) +  A~(Y, V~)]X + [X(A,)+ X,2iX, V~)IY 
(11) 

+ [Y(L)(X, V, ) -  X(A,)iY, V,)IV,. 

It follows that iR(Vj, V~)V~, Vj) = - n,,(1 - ~,~). Since 

(R(Vj, V,)V,, Vj)= (R (V,, Vj) Vj, V,), 

we obtain ~/ii = */ii. This proves (1). 
Using  (11) w e  obtain (R(X, V,) V,, Y) = k((X, Y) - iX, V,)(Y, V,)), where k is 

defined by (10). This proves (iii). 
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It fo l lows f r o m  (11) tha t  

(R  (X, V,) V,, X )  = - ,7,, ((X, X )  - (X,  V, )2) 

(12)  + [ X O , ) +  ,~,~(X, V, ) ] (X,  V, - ~-,,V,). 

S u p p o s e  that  i J j  and  let {e~} (a  = 1 , . . - ,  n )  be  an o r t h o n o r m a l  base  such that  

el V,, e2=  l /X/1 2 = = - r,s(Vj - r,sV~), (e,,, V~) 0, (e, ,  Vs) = 0 (a  = 3 , "  ", n) .  Us ing  

(12), (8), (10) and  L e m m a  1, we can ca lcu la te  the  Ricci  t en so r  S(Vj,  V~): 

S(Vs, V,) = ~ (R(e~, Vj)V,, e~) = - ~s,(n - 2 ) +  k~-,j. 
a = l  

Since  S(Vj,  V~) = S(V~, V~) and  s ince  n ~  2, we ob ta in  r/is = r/i,. Th i s  p roves  (ii). 

LEMMA 3. l f  the conditions of  statement (a) of Theorem 1 are satisfied, then 

(13) r/,j = - k.c o. 

PROOF. First  we cons ide r  the  case r _-> 3. Le t  i, ], k (1 _-< i, j, k =< r)  be  pa i rwise  

dis t inct .  Le t  us d e n o t e  

(14) Qk = Vk - (1 - ~'2)-'[(r,k - ~'jkr,,) V~ + (~'~k - ~',~',,) Vii. 

O n e  can ver i fy  tha t  (Qk, V~) = 0, (Qk, Vj) = 0. B y  L e m m a  1, 17~ (A,) = 0, Qk (Ai) = 

0. T h e r e f o r e  by  (14), 

v ~ o , ) ( 1  - ~-,9 -- v,( ,x,)(~,k - ~ , s , , ) -  v , ( ,~ , )  0-,k - ~-,k~-,,); 

V~ (X,)(1 - r,~) = Vi(As) 0",k - r,k~-,,)- V,(As)(r,k -- r, kr,,). 

Us ing  (8), (10) and  L e m m a  2 (ii), we ob ta in  

~1,~ (1 - r ~ ) -  ~/,, (TSk -- T,k~',,) + k(r,k -- rik~',j)= 0; 

"rhk (1 -- r,~) -- r/,j (r,k -- rikr,,) + k (rik - ~',kr,j) = 0. 

T a k i n g  the  sum  and  the  d i f f e rence  of  these  two  equa t ions ,  we  in fe r  

07,k + r/j~)(1 + r , i )+  (k - "r/,j) (z,k + 7jk) = 0; 

(r/,k + r / s~)(1-  r , i )+  (k + r/,s)(z,k + rik) = 0. 

T a k i n g  the  sum of  these  equa t ions ,  we get  

r / i k  "31- r / jkZiS - -  r/ij"[Sk dr. kz~k = O. 
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Analogously we obtain 

rlk, + rhirkj -- rlkjrj, + krk~ = O. 

Taking the sum of the last two equations, we find r/ik = - krik. 

Suppose now that there are only two LSVF's (V~,)q) and (V2, A2), and suppose 

that (V, 3,2) is a LSVF of the second order. By (2), this means that for every 

X E x(M) ,  X(A2) = (X, V2) V2(A2). Substituting X -- V~ and using (8) and (10) we 

obtain ,112 = - kr~2. This proves the Lemma. �9 

Now we are ready to prove statement (a) of Theorem 1. By (2), we have to 

prove that for every X E x ( M )  

(15) x(x , )  = ix ,  v ,)v,(x,) .  

It .is Sufficient to consider the cases: 

(i) <X, V,) = 0 (i = 1 , . . . , r ) ;  

(ii) X =  V~; 
(iii) X = Vj (j J i) 

In case (i) X ( s  0 by Lemma 1, and (15) is satisfied. 

In case (ii) the equation (15) is satisfied because of (V~, V~)= 1. 

In case (iii) we obtain by (8), (10), (13): X ( ; t , ) - ( X ,  Vi}V~(&)= 

Vj(A,)- r,sV~(L ) = ~7~s + kr~j = 0. This completes the proof of statement (a) of 
Theorem 1. �9 

II. PROOFOF (b). Let T be a distribution T = span{V1,. �9 V,} and let T l be 

the orthogonal complement of T. 

LEMMA 4. The distributions T and T ~ are involutive. 

PROOF. By (7), 

(16) [ V,, V,] = Vv, Vj - Vv, V, = (h, + Am,) V~ - (h, + h,r,,) V/. 

Hence [V~, Vj] E T and T is involutive. 

Let X, Y E T • Then X ( Y ,  V~)= 0. Therefore by (7), (VyX, V~)+ A,(X, Y ) =  

0. Analogously (VxY, V ~ ) + s  It follows that ([X, Y], V~)= 

(VxY, V~) - (VyX, V~) = 0. Hence [X, Y] ~ T • �9 

Let us define a linear differential form 0 on M by the equations 

0 (V 0 =  A, (i = 1 , . . . , r ) ;  

(17) 
o(x)=o ifX T 1 
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LEMMA 5. dO = O. 

PROOF. We have to prove that dO(X, Y) = 0 for every X, Y ~ x ( M ) .  It is 

enough to consider three cases: (1) X - -  V~, Y = Vj; (2) X = V, Y ~ T~; (3) 

X, Y ~ T ~. In case (1) we obtain by (8), (16) and (ii) of Lemma  2: 

dO(V,, V~) = �89 V, ( ,x , ) -  (;~, + ,x,~-,,),~, + (;~, + ,x,~-,)~,] = 0. 

In cases (2) and (3) dO(X, Y) = 0 by Lemmas  1 and 4. �9 

Let p ~ M. Lemma  5 shows that there exist a coordinate neighbourhood U of 

p and a function ~O on U such that Olu = d~b. It is clear that on U 

v , ( ~ , )  = ;~, ( i  = 1 , . . . ,  r ) .  

(18) 
X(@) = 0 for X E T L  

Since, by L e m m a  4, the distributions T and T • are involutive, we can choose U 

to be diffeomorphic to UoX Ux, where Uo and U1 are the slices of the 

distributions T and T ~ through p on U. Let (xl, . .  . , x " )  be a local coordinate 

system on U with the origin at p, such that ( a / a x ' , . . . , a / a x ' )  and 

(a/ax'+', . .  ., a /ax" )  form local bases for T and T • respectively. Note that Uo is 

defined by the equations x"  = 0 and U~ is defined by the equations x ~ = 0 (here 

and in the following i,j, k, m take the values 1, �9 �9 r; a, fl, Y take the values 

r + 1,. �9 n, and a, b, c take the values 1,. �9 n). It follows from (18) and Lemma 

1 that rq, A~ and @ do not depend on x ~, and therefore may be regarded as 

functions on U0. 

Let V~--V~)a /ax  a, where V~)=0 .  Equation (1) can be rewritten in a 

coordinate form 

(19) V~),b = A~ (6 ' j -  V(~) V0)b), 

where comma denotes the covariant derivative. Taking in (19) a = a, b = j we 

obtain V~),s = 0. This implies F~ = 0 and therefore Ogq/ax" = 0. Hence  the g~j do 

not depend on x ~ and may be regarded as functions on Uo. Taking in (19) a = a, 

b /3 we obtain ~ k = ~ U~) = F~kV~ o A ~ .  Let be the inverse matrix of V~). Then 

= This implies 

(20) Og~,~/Ox k = 2g~a ~, A, U~ ). 
i 

Since cg/ax k = E, U~V~, we obtain a$/ax  k = E, U~)V,($). Therefore  by (18), 

(21) a~lax  k = ~,  ,~ U 0) 
i k �9 

i 
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Let us denote  ~,,~ = e-2*g~. It follows from (20), (21) that a~o~lax k = 0. Hence  

the ~ do not depend on x '  and may be regarded as functions on U1. We see 

that 

g,,bdx"dx b = gisdx 'dx s + e 2*~,wdx "dx 8, 

where gijdx~dx s is a metric on Uo, ~,,,zdx~dx ~ is a metric on U~ and e 2. is a 

positive valued function on Uo. Therefore  U is a warped product Uo• 

Taking in (19) a = j, b = a we obtain 

,gVid,gx ~  W - J k = i o).~ FokVo) -Fo~V~i). 

But Fk~ = �89 ~ = O. Therefore  aV{,)/ax ~ = O. Hence  the vector fields V, 

on U = UoX U, may be regarded as fields induced by vector fields W~ = V~Iu o 

defined on Uo. Moreover,  a direct computat ion shows that 

= 

where / denotes the covariant derivative on Uo with respect to the metric 

g~sdx~dx j. In the case r---3, this means that the W~ are LSVF's  of the second 

order. If r = 2 and if V2 is a LSVF of the second order, then V,(A2) = ~-~2V2(A2). 

The latter is equivalent to the equation W,(A2)= ~'~2W2(;t2). As in the proof of 

part (a) of Theorem 1, it follows that W~ is a LSVF of the second order. 

To complete the proof of part (b) of Theorem 1 we only have to show that 

U = U0x,: ,U~ is a k-decomposit ion.  Since there exist r LSVF's  W~ on the 

r-dimensional manifold Uo, it follows from (9) that for r -_> 3, U0 is of constant 

curvature. The same is valid for r = 2, as can be readily deduced from the 

following lemma. 

LEMMA 6. Let  M be a 2-dimensional  R i e m a n n i a n  mani fold  and let V~ and I/2 

be two linearly independent unit vector fields on M satisfying the equations 

(22) VxV,  = A , ( X -  (X, V,)V,) (i = 1,2). 

(23) X(A,) = (X, V,)V,(A,) (i = 1,2), 

where X is an arbitrary vector field on M,  and A,, A2 are functions on M. Then M is 

a mani fo ld  of  constant curvature. 

PROOF. The condition n > 2 was not used in the proof of equation (10) of 

Lemma 2. Thus, from (10) and (23): 

V,(L) = A, 2 -  k, Vj(L) = ~-,~(A, 2 -  k). 
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Now computing ( V I V 2 -  V2V1)(A,) and using V~(r12)= Vl(Vl,  V2) = A2(1 - r~z), 

= A1(1 - [ = Vv,  v 2 -  v ,  = + A,T 2) V ,  - + A  '12) V2, 

we obtain V~ (k) = 0. Therefore k = const. �9 

Returning to the proof of the theorem, equation (21) may be rewritten as 

W~(tk) = tz,, where /~, = A, lu o. Now 

(Vw, grad ~b + kW~ + W~(tp)grad ~b, Wj) 

= W~(Wj(~b))- Vw, Wj(~b) + k~',, + W~(~b)Wj(~b) 

= W~(~j)- /zj(W~(~)-  z,jWj(~b)) + k'r, + i~,l~ 

2 = W~ (~j) + tz j r,~ + k'r,j = ~l,J + kro 

= 0 ,  

by Lemma 3. Therefore V~, grad ~ = - kW, - W~(ff)grad ~. Because of part (c) 

of Proposition 2, we have that U = Uo• is a k-decomposition. 

This completes the proof of statement (b) of Theorem 1. �9 

III. PROOF OF (C). This is completely analogous to that of (b), and is omitted. 

IV. PROOF OF (d). Let (W~,/x,) (i = 1 , - . . ,  r) be LSVF's of the second order on 

a manifold Mo of constant curvature. Let us define a linear differential form 0 by 

the equations 0(W~) =/z,. By Lemma 5, dO = 0. Since Mo is simply connected, 

there exists a function tp on M0 satisfying 0 = dq~. It follows that W~(~b) =/x,. The 

rest of the proof is analogous to that of part (b). �9 

V. PROOF OF (e). By (b) of the present theorem, locally M has a k- 

decomposition Uo• U1, where dim U1 = 1. Therefore locally M is UoXe2,R 1. 

By the definition of k-decomposition this means that M is a manifold of constant 

curvature. �9 

This completes the proof of Theorem 1. �9 

The following result is of global nature. 

THEOREM 2. Let M be a n-dimensional (n >- 4), connected, simply connected, 

and complete Riemannian manifold. I f  M admits r (r >- 2) linearly independent 

L S V F '  s of the second order, then M is a warped product M = Mo x1M1, where Mo 

is either R" or simply connected hyperbolic space H r. In particular: (i) M is 

noncompact; (ii) if M admits (n - 1) LSVF '  s of the second order, then M = R"  or 

M = H " .  
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PROOF. By (b) of Theorem 1, M is locally a warped product. Since M is 

complete and simply connected it is also globally a warped product. This fact is 

an immediate consequence of theorem 1 in [2]. Thus, M--MoXrM1,  where 

dimM0 = r and Mo is connected, simply connected, complete (see [1]), and 

admits r LSVF's of the second order. 

If r = 2 then Mo has constant curvature k by Lemma 6. The possibility k > 0 is 

ruled out since the sphere S 2 does not admit a nonvanishing vector field. 

Therefore k _-< 0, and Mo is either R 2 or H 2. 

If r _-> 3 then Mo has a constant curvature k by (9). In this case let us select two 

fields (VI, hi) and (1,'2, h2) from a given set of r LSVF's on M. These fields define 

a warped decomposition M- -No•162  where No is 2-dimensional, simply 

connected, complete, and admitting two LSFV's of the second order. Once more 

by Lemma 6, N has a constant non-positive curvature. By (a) of Proposition 2, 

this curvature is equal to the curvature k of M0. Therefore M0 is either R r or H' .  

4.  T h e  c a s e  n = 3 

Let M be a 3-dimensional Riemannian manifold and let (V, A,/3) be a LSVF 

of the first order on M, i.e., V is a unit vector field satisfying the equation 

(24) VxV = A (X  - (X, V)V) +/3 (V  x X),  

where A and/3 are functions on M and X E x(M) is an arbitrary vector field 

on M. 

LEMMA 7. 

(25) 

where 

(26) 

For every X, Y E x(M) 

(R(X, V)V, Y)= k((X, Y ) - ( X ,  V)(Y, V)), 

g = - [ v ( a ) + , ~ 2 / 3 2 1 .  

PROOF. 

( R ( X ,  V)V ,  Y) = - (VvVxV - V x V v V -  Vtv, x~V, Y )  = 

(Vv(VxV)-  a([V, X l -  (IV, X], V ) V ) + / 3 ( V  x [V, X]), V). 

Using (24) and substituting 

[v,  x ]  = V v X  - v •  = V v X  - a ( x  - ( x ,  v ) v ) +  / 3 ( v  x x ) ,  
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we obtain 

(R(X, v )  v, Y)= - I V ( X ) +  ,t ~ -  ~3~]((x, Y ) - ( x ,  v ) ( v ,  v))  

- (v(13) + 2~#)((v  • x ) ,  Y). 

Since (R (X, V) V, Y) is symmetric on X and Y, and ((V x X), Y) is antisymmet- 

ric, we get (25). I I  

Let S be the Ricci tensor corresponding to the curvature tensor R, let 

/z ~ , /z 2, /z 3 be eigenvalues of S, and let el, e2, e3 be linearly independent unit 

eigenvectors which correspond to/Zl,/*2,/*3. 

THEOREM 3. Let (V, A, fl) be a L S V F  of the first order on M. Then 

(a) I f  tzl, lz2, tz3 are pairwise different (/.,1</*3</z2), then V is one of the 

following four vector fields : 

v ( + ( = +- e l  e2. 
\ [.L2 - -  [.s 1 / - -  \ / . s  ~[,s 1 ] 

(b) I f  lz2= tz3, but t z , f  tt2, lz3, then 

(28) V = -+ e,. 

PROOF. The proof is purely algebraic, using only equation (25). Let p be 

some fixed point on M. It is sufficient to prove equalities (27), (28) at this point. 

Therefore we can consider /z~, Ix2, tz3, k, and the components of the tensors R 

and S, as real numbers, and V,X, Y as vectors in R 3. 

I. PROOF OF (a). Let X~, X3 E R 3, (X2, V) = 0, (X3, V) = 0, (X2, X3) = 0, 

IIx211 = IIx31[ = 1. Then by (25), S(X2,X3)--- (R(X2, V)X3, V )=  0; 

s(x2, x2)-  s(x3, x3) = (R (X2, V)X2, V) + (R (Xz, X3)X~, X3) 

- (a  (X3, V)X3, V) - (R (X3, X2)X3, X2) 

= k - k  =0.  
t 

It follows that for the frame {X1 = V, X2, X3}, $23 = 0, $22 = $33. The characteris- 

tic equation for S takes the form 

f(~,) = (~ - S . ) [ (~  - S33)(~, - S , , ) -  (S~,~ + S~,3)] = 0. 

One of the roots is/z = #3 = $33. The other roots #1, p.2 can be found from the 

equation 
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(29) (/z - /x3)  (/x - S , 1 ) -  S 2 = - ( 12"~- S13 ) -- O. 

It is easily verified that  / z , < t z 3 < / z 2  so that  our  labeling of the  roots  is 

consistent .  Let  us find the e igenvector  e3 = x V  + yX2+ zX3 cor responding  to 

( S l l -  [.s At- S12y ~- SI3Z .~- 0, 

(30) S,2x = o, 

$13x = O. 

If x / 0 then $12 = S~3 = 0, and SH = tt3, so that  the e igenvalues  are equal.  Since 

this is not the case, we get x = 0. The re fo re  (e3, V )  = 0. Let  us now take  X~ = V, 

X3 -- e3. Then  $13 = 0. Suppose  el = XlX~ + y~X:, e~ = xzX1 + y2X2. Then  

( S .  - ~ ) x ~  + S~y~ = O, 

S12X2 "[- (/"/'3 -- ~2)y2 = 0. 

W e  see that  the vec tor  S,2XI + ( tz3-tz2)X2 is perpendicu la r  to e:. H e n c e  it is 

col l inear  with el and we have  

el = +-[S~2+ ( /~3-  tz:) ~] ~(Sl2V + (tz3- p.2)X2). 

Let  us deno te  c o s t  = (e~, V). Then  V = cos re~+ sin Te:. The  p roof  will he 

comple t ed  by showing that cos2~ - = ( / z3 - /Xl ) / ( t t2 -  ttl). W e  have  

COS2 /. -- [ '~3-  ~'L1 -- S22 -- /3"3-- ~1"/~ 1 
~ 2 -  ~/~1 S 2 2 -  (~L/,3- P*2) 2 I-L2- ~s 

= / ' L 2 -  ~3 [S22 "31- ~1j'23- ~/~3([d~ 1 "~ ~2) "~ [-s 1/~L2] o 
[$22  --  (jtJ'3 --  ~-L2) 2] (jl~2 --  /~ l )  

From (30) we get/Zl  +/z2 = / z 3 +  $11,/z~/z2 =/z3Sn - S~:. Substi tut ing into the last 

formula, we obtain cos2~ - - ( / x 3 - / X l ) / ( / x 2 - / x l ) =  0. This completes the proof  of 

part (a). 

II.  PROOFOF (b). In this case/x2 = / z3 , / z ,  / /z2 , /z3 .  Let  (X2, V) = 0, (X3, V) = 

0, [IX2[[ = [IX311= 1. As  in the p roof  of  (a) we obtain  for  the f r ame  {X~= 

V, X2, X3}, $23 = 0, $22 = $33. T h e  characteris t ic  equat ion  for  S takes  the fo rm 

f ( /~)  ~-- ([~ - S33) [([.~ - S33)(j~ - S l l ) -  (S22~ - $123)] = 0. 

The second factor has two equal roots only if $33 = Sn, $12 = $13 = 0, and we 

ob ta in / x l  =/z2 =/z3. This is not the case. Hence /z  = $33 must be a root of the 

/z =/z3: 
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second factor, and we obtain S}2 + S~3 = 0, i.e., S,2 -- S,~ = 0. The Ricci tensor 

takes a diagonal form and therefore V is an eigenvector: V = +- e,. �9 

If (V, A,/3) is a LSVF of the first order, so is the vector ( -  V, A, - /3 ) .  If we do 

not distinguish between such two LSVF's, we obtain as an immediate conse- 

quence of Theorem 3 the following theorem. 

THEOREM 4. Let d i m M  = 3. 

(a) If  the eigenvalues of the Ricci tensor are pairwise different, then M admits at 

most two different LSVF's of the first order. 

(b) If  two eigenvalues of the Ricci tensor are equal but the third is distinct, then 

M admits at most one LSVF of the first order. 

(c) If M admits three different (but not necessarily linearly independent) 

LSVF's of the first order, then M is a manifold of constant curvature. 

THEOREM 5. Let dim M = 3. If  V is a LSVF of the second order on M, then at 

every point of M, V is an eigenvector of the Ricci tensor S. 

PROOF. 

(0 
(31) 

By Proposition 1, V satisfies one of the conditions 

X(a ) = <X, V> V(A), 

/3=0 

for every X E x(M) ,  

(32) (ii) ;t = 0; /3 = const J 0. 

To prove the theorem we use formula (24), page 142 of [6]. 

If V satisfies equation (31) this formula reads 

(33) S(X, Y ) =  [ k S -  V(A)-A2](X,  Y ) - [ � 8 9  Y) 

where S is the scalar curvature. 

If V is not an eigenvector of S, there exist two orthonormal eigenvectors e, 

and e2 of S such that (V, el) ~ O, (V, e2) ~ O. Taking X = el and Y = e2 in (33), we 

obtain � 89  3 V ( A ) - 3 A  2= 0, and therefore S(X, Y )=  ~S(X, Y). It follows that 

M is of constant curvature and V is an eigenvector, contradicting our assump- 

tion. 

If V satisfies equation (32), equation (24), page 142 of [6] reads 

S(X, Y) = (�89 +/32)(X, Y)- (�89 + 3/32)( V, X)(V, Y). 



Vol. 33, 1979 RIEMANNIAN MANIFOLDS 51 

As in the previous paragraph we find that V is an eigenvector of S. 

As an immediate  consequence of Theorems 3 and 5 we obtain 

THEOREM 6. Let dim M = 3. I f  M admits two linearly independent L S V F ' s  

one of which is of the second order, then M is a manifold of constant curvature. 
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