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ONLOCALLY SYMMETRIC VECTOR FIELDS
ON RIEMANNIAN MANIFOLDS

BY
HILLEL GAUCHMAN

ABSTRACT

It is shown that if an n-dimensional (n Z 3) Riemannian manifold admits r = 2
locally symmetric vector fields (LSVF’s), then it isa V(k )-space. In particular, if
r=n —1 then the manifold is a space of constant curvature. In the case of a
3-dimensional Riemannian manifold a close connection between LSVF’s and
eigenvectors of the Ricci tensor is found.

1. Introduction

This paper is concerned with n-dimensional (n >2) Riemannian manifolds
admitting r =2 linearly independent locally symmetric vector fields (briefly
LSVF). LSVF’s of the first and of the second order were defined in [6] by A. G.
Walker and the definition was motivated by his investigation of possible laws of
orientation of galaxies in the standard cosmological model of General
Relativity ({5]).

In the present paper we show that the existence of several LSVF’s imposes
very strong restrictions on a Riemannian manifold. It turns out that forn =4 a
Riemannian manifold admits r =3 linearly independent LSVF’s of the first
order or admits two such fields at least one of which is of the second order, if and
only if it is a Riemannian manifold of a very special type (V(k)-space). It will be
also shown that if for n =4 a Riemannian manifold admits (n — 1) linearly
independent LSVF’s of the first order, then it is a space of constant curvature.

The case n =3 is special. It will be shown that in this case there is a close
connection between LSVF’s and eigenvectors of the Ricci tensor. It turns out
also that if a 3-dimensional Riemannian manifold admits three different (but not
necessarily linearly independent) LSVF’s of the first order or two such fields one
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of which is of the second order, then this Riemannian manifold is a space of
constant curvature.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold (n = 2) and let V be a unit
vector field on M. Let U be a normal coordinate neighbourhood with the center
at p € M. According to [6], the field V is said to be symmetric about p if its
restriction on U is invariant under all orthogonal transformations of the normal
coordinates on U which leave V(p) invariant. Let (x) = (x', -+ -, x") be a normal
coordinate system on U with the center at p and let F(x) = 0 be the condition on
V = V(x) for symmetry about p. In this case F(0) = 0 identically, and V is said
to have first order local symmetry about p if F/dx' =0 at p (i=1,---,n), and
second order local symmetry about p if also 3°F/ax‘ox’ =0 at p (i,j =1,---,n).
The vector field is said to be a locally symmetric vector field (LSVF) of the first
(second) order, if it has first (second) order local symmetry about every point
of M.

ProposiTioN 1 ([6]). Let M be an n-dimensional Riemannian manifold.
(a) Forn = 4 a unit vector field V on M is a LSVF of the first order if and only if
there exists a function A on M such that for every X € TM

vwhere TM is the tangent bundle of M and (- -,---) is the Riemannian scalar
product.

This field is a LSVF of the second order if and only if in addition to (1) it satisfies
@) X(\)=(X, V)V(A)

for every X € TM.
(b) Forn =3 a unit vector field V on M is a LSVF of the first order if and only if
there exist two functions A and B on M such that for every X € TM

3) ViV = A (X (X, V)V)+ B(V X X),

where V X X is the ‘“cross-product” in 3-dimensional Euclidean space.

This field is a LSVF of the second order if and only if in addition to (3) it satisfies
one of the following two conditions:

(i) XQA)=(X, VIV(a),
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Q) B=0
for every X € TM.
(i) A =0,
(&) B = const # 0.

In the following discussion we need the definition and some properties of
V(k)-spaces. Such spaces were introduced and investigated by G. 1. Kruckovic
and A. S. Solodovnikov in [3], [4].

DeFintTioN 1 ([1]).  Given Riemannian manifolds M, and M, and a positive
valued function f on M,, the warped product M = M,x;M, is the manifold
M,x M; furnished with the Riemannian structure such that |X|}f=
| mou X | + f2(mox)|| 1 X | for every X € TM,, x € M, where m; (i =0, 1) is the
projection m; : Mo X M;— M, and || || is the norm on M.

DeFiNiTioN 2 ([4]). A warped product M= M,X;M, is called a k-
decomposition of M if dimM,=2 and the manifold M,x;R’ is a space of
constant curvature k. M, is called the principal part of the k-decomposition.

PropositTioN 2 ([4]). (a) If a Riemannian manifold M admits a k-
decomposition M = My XM, and an I-decomposition M = No X Ny, thenk = |,

(b) If M = My XM, is a k-decomposition of M, then M, is a space of constant
curvature k.

(c) Given a space M, of constant curvature k, a function ¢ on M, and an
arbitrary Riemannian manifold M,, the warped product M = MyX M, is a
k -decomposition of M if and only if § satisfies the condition

(6) Vxgrad¢ = — kX ~ X(¢)grad ¢,

where X € TM, and V is the covariant derivative on M,.

DerniTiON 3 ([4]). A Riemannian manifold M is called a V(k)-space if for
every p € M there exists a neighbourhood U 3 p admitting a k -decomposition
U = U() fo].

DEerFiNTION 4. Given a2 V(k)-space M and p € M, let A be a set of all
neighbourhoods of p which admit a k-decomposition. The maximal value of
dim U, for all k -decompositions U = Uy X;U,, U € A is called the range of M at
the point p.
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It is convenient to regard an n-dimensional space of constant curvature k as a
V(k)-space of the range n at every point.

3. Thecase n=4

In this section we investigate n-dimensional (n = 4) Riemannian manifolds
admitting several LSVF’s. We will denote a LSVF V satisfying the equation (1)
by (V; ).

THEOREM 1. (a) Let M be an n-dimensional (n = 4) Riemannian manifold
admitting either r = 3 linearly independent LSVF’s of the first order or r = 2 such
fields at least one of which is of the second order. Then each of these fields is a
LSVF of the second order.

(b) If an n-dimensional (n = 4) Riemannian manifold M admits r = 2 linearly
independent LSVF’s (V,A) (i=1,--+,r) of the second order then it is a
V(k)-space. For every point p € M there exist a neighbourhood U3 p, a
k-decomposition U = Uy X 26U, with dimUs=r, and r LSVF’s (W, u;) of the
second order on U, such that Wi(y)=pu, Vi(q)= ¢,.(Wi(q)), Ar(q)=
wi(qo), where q =(qo,q:) is an arbitrary point of U = Uy X U, @, : Up— U,
©4,(q0) = (g0, q1); and mo: U — U, is the natural projection.

() If My isa V(k)-space, p € M, and the range of M at p is r, then there exist a
neighbourhood U 3 p, a k-decomposition U = Uy X, U, with dimU,=r, and r
LSVFE’s (W, ) (i =1, -, 1) of the second order on U, such that W, (¢) = u; and
the vector fields (Vi,A)) on U arising from (W, w;) as prescribed in (b), are
LSVF’s of the second order on U.

(d) If M is a connected and simply connected r-dimensional Riemannian
manifold of constant curvature k, and (W, u;) (i =1,---,r) are LSVF’s of the
second order on M, then there exists a function y on M, satisfying the equations
Wi (¢) = w.. If M, is an arbitrary Riemannian manifold, then M = MyX =M, is a
V(k)-space and the vector fields (V, A:) (i =1,---,r) arising from (W, u;) as
prescribed in (b), are LSVF’s of the second order on M.

(e) If an n-dimensional (n = 4) Riemannian manifold admits (n — 1) linearly
independent LSVFE’s of the first order, then it is a space of constant curvature.

I. ProoFoF(a). Let (V,A)(i=1,---,r;r=2)be LSVF’s of the first order
on M. Then by (1)

(7) Vx‘/uz)t.(X_(X,‘/x>‘/.)
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Let us denote 7; =(V, V;) and let x(M) be the set of all vector fields on M.

LemMA 1. Let X € x(M). If forsomei,j (i# j)(X, Vi) =0,(X, V;) =0, then
(X Vi, V=0, (X, Vi],Vi)=0, X(7,)=0, X(n)=0.

Proor. Vi(X, V;)=0. Using (7) we obtain (V,. X, V;)=0. Again by (7),
X, Vi], Vi) =(VxVi = V. X, V;) = A(X, V;) = 0. It can be proved analogously
that ([X, Vi], Vi)=0. _

Also X(1;)=X(V, V) =(VxV, V) +(V,VxV,)=0, by (7).

Since ([X,V;],Vi)=0, (X,V;],V))=0, we obtain [X,V](r;)=0. It
follows that

0=[X, Vi](ms) = X(Vimy) = V;(X1y) = X(Vi{V,, V)
=X(Vy,V, V) +(V, Vi, V) = X(A(1 - 79)) = X (A ) (A - 73).

Therefore X (A;) = 0. .
Let us denote
® ny = Vi(y) + ATy
LemMa 2. () nu=1Mn= - =1,
(i) n; = nje
(iii) For every X, Y € x(M)
9) (R(X, V)V, Y)=k((X, Y)— (X, VXY, V}))
where k = — 1, i.e.,
(10) k=-[Vi(A)+A%].

Proor. Computing (VxVy = VyVx ~Vixy;) Vi and using (7), we obtain
R(X,Y)Vi= —[Y()+ AKY, V)IX +[X(A) + AKX, V)Y
b FIYO)X, V) - XAXY, VOV
It follows that (R(V, Vi)V, V)= — na(1— 7). Since
(R(V, Vi)V, V))=(R(V,, V})V,, Vi),

we obtain 1; = ;. This proves (1).
Using (11) we obtain (R(X, Vi)V, Y) = k((X, Y)— (X, V.X(Y, V.)), where k is
defined by (10). This proves (iii).
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It follows from (11) that
(R(X, V)V, X) = — 1;,((X, X)— (X, Vi))
2 +[X () +AHX, VOKX, V, = 7, Vo).

Suppose that i # j and let {e.} (a =1, -, n) be an orthonormal base such that
e=V,ea=1/V1- TV ~ Vi), (€ Vi) =0, (e, V;) =0 (@ =3, -+, n). Using
(12), (8), (10) and Lemma 1, we can calculate the Ricci tensor S(V,, Vi)

S(V, V)= 2 (Rlew V)Voer) = = my(n =2+ kr,

Since S(V;, Vi) = S(V,, V;) and since n # 2, we obtain n; = n;. This proves (ii).
|
Lemma 3. Ifthe conditions of statement (a) of Theorem 1 are satisfied, then
(13) Ny = — k'T.',‘.
Proor. First we consider the case r = 3. Let i, j, k (1=1i,j,k =r) be pairwise
distinct. Let us denote
(14) Vi = Vi = (1= 73 [(rac = 57} Vi + (7 =~ 7y ) Vi)

One can verify that (Vi, Vi)=0,(V,, V,)=0. By Lemma 1, Vi (A) =0, V. A=
0. Therefore by (14),

Vi(a)(1 - ,r‘z,) = Vi(A) (7u — Tamy) — Vi(Ai)(Tik = TaTy);
Ve (= 75 = V;(4) (T = 7ary) = Vi) (7o — me7y)-
Using (8), (10) and Lemma 2 (ii), we obtain
N (L= 75) = My (T — Taery) + k (Ta — 7amy) = 0;
N (1= 75) = 0y (7o — Temy) + K (T = Tumy) = 0.
Taking the sum and the difference of these two equations, we infer
(ma + mp ) (L4 7) + (k = 1) (Tac + 7)) = 05
(ma + M) (1= 75) + (k + my) (7 + 7 ) = 0.
Taking the sum of these equations, we get

Nix + NikTij — NiTix + kTik =0.
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Analogously we obtain
M + NiTig — M + kr; =0.

Taking the sum of the last two equations, we find 7y = — k7.

Suppose now that there are only two LSVF’s (V,, A,) and (V>, A,), and suppose
that (V, A;) is a LSVF of the second order. By (2), this means that for every
X € x(M), X(A2) = (X, V,)Vy(A,). Substituting X = V, and using (8) and (10) we
obtain 7., = — k74, This proves the Lemma. |

Now we are ready to prove statement (a) of Theorem 1. By (2), we have to
prove that for every X € y(M)

(15) X(n)=(X, Vo Vi(h).

It is sufficient to consider the cases:

@ X, Vo=0(@(=1,---,r)

(i) X=1V;

(i) X =V, (j#1i)

In case (i) X(A)=0 by Lemma 1, and (15) is satisfied.

In case (ii) the equation (15) is satisfied because of (V, V) =1.

In case (iii) we obtain by (8), (10), (13): X(An)—(X, VO)Vi(h)=
V(&) — 7 Vi(A) = m; + kr; = 0. This completes the proof of statement (a) of
Theorem 1. N

I1. ProorFoOF (b). Let T be a distribution T = span{Vy, -+, V,} and let T* be
the orthogonal complement of T.

LemMma 4. The distributions T and T+ are involutive.

Proor. By (7),
(16) (Vo ViI=Vo V=V Vi= (A + Amy) Vi = (A + Ay V.

Hence [V, V;]E€ T and T is involutive.

Let X, Y € T*. Then X(Y, V;)=0. Therefore by (7), (Vy¢X, Vi) + A(X, Y) =
0. Analogously (VxY,V)+A(X,Y)=0. It follows that ([X,Y],Vi)=
(VxY, V)= (VyX, Vi)=0.Hence [X, Y] € T". [ |

Let us define a linear differential form 6 on M by the equations

0(Vi))=\ i=1,---r)

(17) 9(X)=0 ifXeT"
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Lemma 5. d6 =0.

Proor. We have to prove that do(X, Y)=0 for every X, Y € x(M). It is
enough to consider three cases: (1) X=V, Y=V; 2) X=V, YET" (3)
X, Y € T*. In case (1) we obtain by (8), (16) and (ii) of Lemma 2:

do(V, V;)=3[Vi(h) = V;(A) = (A + Ami)d + (A + A )A ] = 0.

In cases (2) and (3) d8(X, Y) =0 by Lemmas 1 and 4. [ |
Let p € M. Lemma 5 shows that there exist a coordinate neighbourhood U of
p and a function ¢ on U such that 0|U= dis. It is clear that on U

Vi) =A  (i=1,-r).

(18) X()=0 forXeT-

Since, by Lemma 4, the distributions T and T are involutive, we can choose U
to be diffeomorphic to U,Xx U,, where U, and U, are the slices of the
distributions T and T* through p on U. Let (x',--+,x") be a local coordinate
system on U with the origin at p, such that (3/dx',---,3/dx") and
(8/ax™,---,8/3x") form local bases for T and T* respectively. Note that U, is
defined by the equations x* = 0 and U, is defined by the equations x' = 0 (here
and in the following i, j, k,m take the values 1,---,r; a, B,y take the values
r+1,---,n and a, b, ¢ take the values 1, - - -, n). It follows from (18) and Lemma
1 that 7, A; and ¢ do not depend on x° and therefore may be regarded as
functions on U,

Let V.= V§,ad/dx®, where V§=0. Equation (1) can be rewritten in a
coordinate form
19) Vine= Ai(85—= ViyVae),

where comma denotes the covariant derivative. Taking in (19) a = a, b = we

obtain V§,;= 0. This implies I'; = 0 and therefore dg;/dx* = 0. Hence the g; do

not depend on x* and may be regarded as functions on U,. Taking in (19) a = «,

b = B we obtain '3V = Ads Let UY be the inverse matrix of V¢, Then
&= 832 A UY. This implies

(20) 08/ 0x* = 2805 2, MUY
Since 4/9x* = 3, UV, we obtain dy/dx* = =, UPV,(¢). Therefore by (18),

(1) aplox* =3 NUL.
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Let us denote g.s = e **g.p. It follows from (20), (21) that 8g.s/dx* = 0. Hence
the g, do not depend on x’ and may be regarded as functions on U,. We see
that »

gasdx *dx® = gydx'dx’ + e**g pdx *dx®,

where g,dx'dx’ is a metric on U, §.edx°dx® is a metric on U, and e® is a
positive valued function on U,. Therefore U is a warped product UyX . U,.
Taking in (19) a = j, b = @ we obtain

BVf,»)/axa = V{j)‘a_ F{,k V:‘,) = - r{,k :‘,').

But I, = 3¢’ g /3x* = 0. Therefore dV,/dx> = 0. Hence the vector fields V,
on U = U, x U, may be regarded as fields induced by vector fields W, = V,
defined on U,. Moreover, a direct computation shows that

Up

Winne= Ai(8k— Wi, W),

where / denotes the covariant derivative on U, with respect to the metric
gidx'dx’. In the case r = 3, this means that the W, are LSVF’s of the second
order. If r =2 and if V,is a LSVF of the second order, then Vi(A,) = 71, Va(A2).
The latter is equivalent to the equation Wy(A;) = 7, Wx(A,). As in the proof of
part (a) of Theorem 1, it follows that W, is a LSVF of the second order.

To complete the proof of part (b) of Theorem 1 we only have to show that
U= Uyx.,»U, is a k-decomposition. Since there exist r LSVF’s W, on the
r-dimensional manifold U,, it follows from (9) that for r = 3, Uy is of constant
curvature. The same is valid for r =2, as can be readily deduced from the
following lemma.

LemMMA 6. Let M be a 2-dimensional Riemannian manifold and let V, and V,
be two linearly independent unit vector fields on M satisfying the equations
(22) VxVi=M(X —(X, V)V) (i=1,2).

(23) X(A)=«(X, V)Vi(n) (i=1,2),
where X is an arbitrary vector field on M, and A, A are functions on M. Then M is
a manifold of constant curvature,

Proor. The condition n >2 was not used in the proof of equation (10) of

Lemma 2. Thus, from (10) and (23):

Vi) =2Al-k, V(&)= (AT -k).
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Now computing (V; V2= V,V,)(A:) and using Vi(1;) = V(V,, Vo) = A(1 - 1h),
Vz(le) = /\1(1 - T%z), [VI, Vz] = VV1 V,— sz V,= (/\2 + /\17'12) V- ()\1 + /\27'12) Vz,
we obtain Vi(k) = 0. Therefore k = const. |

Returning to the proof of the theorem, equation (21) may be rewritten as
W.(¢) = w;, where u; = A

v, Now

(Vw, grad ¢ + kW + W, (¢)grad ¢, W))
= Wi(W;(¥)) - Vw W, (¥) + k7 + Wi (¥) Wi (¢)
= Wilwy) = (Wi () — W, (¥)) + k7 + pa
= Wi(p;)+ pimy + kry = my + kry
=0,

by Lemma 3. Therefore Vw, grad ¢ = — kW, — W, (y)grad ¢. Because of part (c)
of Proposition 2, we have that U = UyX,» U, is a k-decomposition.
This completes the proof of statement (b) of Theorem 1. n

II1. ProOFOFE (c). This is completely analogous to that of (b), and is omitted.

IV. Prooror(d). Let (W, u:) (i =1,---,r)be LSVF's of the second order on
a manifold M, of constant curvature. Let us define a linear differential form 8 by
the equations 6(W;) = u.. By Lemma 5, d6 = 0. Since M, is simply connected,
there exists a function ¢ on M, satisfying 6 = dy. It follows that W, (/) = u.. The
rest of the proof is analogous to that of part (b). ]

V. ProoF oF (e). By (b) of the present theorem, locally M has a k-
decomposition U, X, U;, where dim U, = 1. Therefore locally M is UyX.»R".
By the definition of k -decomposition this means that M is a manifold of constant
curvature. n

This completes the proof of Theorem 1. ]

The following result is of global nature.

THEOREM 2. Let M be a n-dimensional (n = 4), connected, simply connected,
and complete Riemannian manifold. If M admits r (r = 2) linearly independent
LSVF’s of the second order, then M is a warped product M = M, X,;M,, where M,
is either R" or simply connected hyperbolic space H'. In particular: (i) M is

noncompact; (i) if M admits (n — 1) LSVF’s of the second order, then M = R" or
M=H"
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Proor. By (b) of Theorem 1, M is locally a warped product. Since M is
complete and simply connected it is also globally a warped product. This fact is
an immediate consequence of theorem 1 in [2]. Thus, M = M,X;M,, where
dimMy,=r and M, is connected, simply connected, complete (see [1]), and
admits r LSVF’s of the second order.

If r =2 then M, has constant curvature k by Lemma 6. The possibility k >0 is
ruled out since the sphere S* does not admit a nonvanishing vector field.
Therefore k =0, and M, is either R* or H>.

If r =2 3 then M, has a constant curvature k by (9). In this case let us select two
fields (Vi, A1) and ( V>, A;) from a given set of r LSVF’s on M. These fields define
a warped decomposition M = NyX N,, where N, is 2-dimensional, simply
connected, complete, and admitting two LSFV’s of the second order. Once more
by Lemma 6, N has a constant non-positive curvature. By (a) of Proposition 2,
this curvature is equal to the curvature k of M,. Therefore M, is either R" or H".

4. The case n =3

Let M be a 3-dimensional Riemannian manifold and let (V, A, B8) be a LSVF
of the first order on M, i.e., V is a unit vector field satisfying the equation

(24) ViV = A(X ~ (X, V)V)+ B(V X X),

where A and B are functions on M and X € y(M) is an arbitrary vector field
on M.

LemMA 7. For every X, Y € x(M)

(25) (RIX, VIV, Y)=k(X, Y)—(X, VY, V)),
where
(26) k=-[V(A)+A*-B7].

PROOF.

(R(X, V)V, Y)= —(Vy VsV~ VsV, V-V V, V)=
(Vo(VxV)= AV, X]—{(V, X], V)V)+ B(V X[V, X]), Y).
Using (24) and substituting
[V, X]=VoX - ViV =V X - A(X = (X, V)V)+ B(V x X),
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we obtain
(R(X, V)V, Y)= ~[V(A)+ A7~ B7J((X, V)~ (X, VY, V))
= (V(B)+2AB8){(V X X), Y).

Since (R(X, V)V, Y) is symmetric on X and Y, and {{V x X), Y) is antisymmet-
ric, we get (25). [ ]

Let S be the Ricci tensor corresponding to the curvature tensor R, let
w1, k2, i3 be eigenvalues of S, and let e, €5, e; be linearly independent unit
eigenvectors which correspond to pi, g, 3.

THEOREM 3. Let (V,A,B) be a LSVF of the first order on M. Then
(@) If w1, o ps are pairwise different (u,<u;<puz), then V is one of the
following four vector fields:

27) V= (M)llzeli(&m)mez'
M2~ p K2~
(b) If p2= w3, but w, # p,, s, then

(28) V==ze,.

Proor. The proof is purely algebraic, using only equation (25). Let p be
some fixed point on M. It is sufficient to prove equalities (27), (28) at this point.
Therefore we can consider i, 2, 43, kK, and the components of the tensors R
and S, as real numbers, and V, X, Y as vectors in R>

I. Proor oOF (a). Let X5, X;€ER? (X5, V)=0, (X5 V)=0, (X3, X:)=0,
[ Xz = [| Xl = 1. Then by (25), (X2, X5) = (R(Xz, V) X5, V) =0;
S(Xz, X2) = S(X5, X3) = (R(X3, V)Xs, V) +(R(Xz, X3) X2 X3)
—(R(X3, V) X5, V)= (R(X;5, X2) X5, X2)
=k—-k=0.

It follows that for the frame {X, = V, X, X3}, S23 =0, Sz, = S5;. The characteris-
tic equation for S takes the form

flw)=(u = Su)[(e — Ss3)(n — Su)— (Sh+ S} =0.

One of the roots is & = w3 = Sj;. The other roots y,, u, can be found from the
equation
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29 (1 — pa)(p — Su)— (ST2+ $%) =0.

It is easily verified that u,<u;<u. so that our labeling of the roots is
consistent. Let us find the eigenvector e;= xV + yX,+ zX; corresponding to

B = pa
(Su—p3)x + Sy + Sz =0,
(30) Sex =0,
Siux =0.

If x #0 then Si2= S13=0, and S,; = u,, so that the eigenvalues are equal. Since
this is not the case, we get x = 0. Therefore {(e,, V)= 0. Let us now take X, =V,
X;=es. Then Si3=0. Suppose e, = x, X+ y X, €2=x,X;+ y.X,. Then

(Sn - ,U~2)x2+ 512)’2 =0,
Sexat (ua— #2))’2 =0.

We see that the vector S,.X, + (us— u2)X; is perpendicular to e,. Hence it is
collinear with e, and we have

er= *[Sht (us— w2l H(SuV + (us— 1) Xo).

Let us denote cost ={e;, V). Then V = cosre,+ sinre,. The proof will be
completed by showing that cos’r = (us— w1)/(u2— i1). We have

M3 Py _ S%z _ M3
M2 i sz—(,u,3—,u.2)2 M2 M

cos’r —

— M2— M3
[S%2— (s = w2) [ (2 — p1)

[S%Z + F‘g- (g + pa) + papo).

From (30) we get i+ p2= s+ Si, a2 = 43S — Sh. Substituting into the last
formula, we obtain cos’7 — (ws— w1)/(2— w,) = 0. This completes the proof of

part (a).

II. ProoFoOF(b). In thiscase pw,= s, p1# f, 3. Let (X5, V) =0,(X;, V) =
0, [ X2]|=[|Xs[=1. As in the proof of (a) we obtain for the frame {X,=
V, X2, X3}, 8:3=0, S» = S3. The characteristic equation for S takes the form

fle)= (1 = Su) (s = S} (it = Su)) = (ST + SH) =0,

The second factor has two equal roots only if S3 = Sy, Si.= S1:=0, and we
obtain u; = .= w,. This is not the case. Hence u = S3; must be a root of the
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second factor, and we obtain S}, + $3;=0, i.e., S;- = S13=0. The Ricci tensor
takes a diagonal form and therefore V is an eigenvector: V = te,. a

If (V, A, B) is a LSVF of the first order, so is the vector (— V, A, — ). If we do
not distinguish between such two LSVF’s, we obtain as an immediate conse-
quence of Theorem 3 the following theorem.

THEOREM 4. Let dimM = 3.

(a) If the eigenvalues of the Ricci tensor are pairwise different, then M admits at
most two different LSVF’s of the first order.

(b) If two eigenvalues of the Ricci tensor are equal but the third is distinct, then
M admits at most one LSVF of the first order.

(c) If M admits three different (but not necessarily linearly independent)
LSVF’s of the first order, then M is a manifold of constant curvature.

THEOREM 5. Let dim M =3. If Vis a LSVF of the second order on M, then at
every point of M, V is an eigenvector of the Ricci tensor S.

Proor. By Proposition 1, V satisfies one of the conditions
0 X(A)=(X, V)V(}),

31

G1) -0

for every X € y(M),
(32) (i) A =0 B = const # 0.

To prove the theorem we use formula (24), page 142 of [6].
If V satisfies equation (31) this formula reads

(33) S(X, Y)=[3§ - V()= A’ (X, Y)— [4S - 3V(A) = 3A7(V, X )(V, Y)

where § is the scalar curvature.

If V is not an eigenvector of S, there exist two orthonormal eigenvectors e,
and e; of S such that (V, e,) # 0, (V, e;) #0. Taking X = e, and Y = e,in (33), we
obtain $§ —3V(A)—3A2=0, and therefore S(X, Y)=15(X, Y). It follows that
M is of constant curvature and V is an eigenvector, contradicting our assump-
tion.

If V satisfies equation (32), equation (24), page 142 of {6] reads

S(X, Y)= (S +B)NX, Y) - (S + 3BV, XNV, Y).
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As in the previous paragraph we find that V is an eigenvector of S. ]
As an immediate consequence of Theorems 3 and 5 we obtain

THeorRem 6. Let dim M = 3. If M admits two linearly independent LSVF’s
one of which is of the second order, then M is a manifold of constant curvature.
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